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Attention has been found to have a wide variety of effects on the responses of neurons in visual cortex. We
describe a model of attention that exhibits each of these different forms of attentional modulation, depending
on the stimulus conditions and the spread (or selectivity) of the attention field in the model. The model helps
reconcile proposals that have been taken to represent alternative theories of attention. We argue that the
variety and complexity of the results reported in the literature emerge from the variety of empirical protocols
that were used, such that the results observed in any one experiment depended on the stimulus conditions
and the subject’s attentional strategy, a notion that we define precisely in terms of the attention field in the
model, but that has not typically been completely under experimental control.

Introduction
Attention has been known to play a central role in perception

since the dawn of experimental psychology (James, 1890).

Over the past 30 years, the neurophysiological basis of visual

attention has become an active area of research, yielding an

explosion of findings. Neuroscientists have utilized a variety of

techniques (single-unit electrophysiology, electrical microstimu-

lation, functional imaging, and visual-evoked potentials) to map

the network of brain areas that mediate the allocation of attention

(Corbetta and Shulman, 2002; Yantis and Serences, 2003) and to

examine how attention modulates neuronal activity in visual

cortex (Desimone and Duncan, 1995; Kastner and Ungerleider,

2000; Reynolds and Chelazzi, 2004). During the same period of

time, the field of visual psychophysics has developed rigorous

methods for measuring and characterizing the effects of atten-

tion on visual performance (Braun, 1998; Carrasco, 2006; Cava-

nagh and Alvarez, 2005; Sperling and Melchner, 1978; Verghese,

2001; Lu and Dosher, 2008).

We review the single-unit electrophysiology literature docu-

menting the effects of attention on the responses of neurons in

visual cortex, and we propose a computational model to unify

the seemingly disparate variety of such effects. Some results

are consistent with the appealingly simple proposal that atten-

tion increases neuronal responses multiplicatively by applying

a fixed response gain factor (McAdams and Maunsell, 1999;

Treue and Martinez-Trujillo, 1999), while others are more in

keeping with a change in contrast gain (Li and Basso, 2008; Mar-

tinez-Trujillo and Treue, 2002; Reynolds et al., 2000), or with

effects that are intermediate between response gain and

contrast gain changes (Williford and Maunsell, 2006). Other

studies have shown attention-dependent sharpening of neuronal

tuning at the level of the individual neuron (Spitzer et al., 1988) or

the neural population (Martinez-Trujillo and Treue, 2004). Still

others have shown reductions in firing rate when attention was

directed to a nonpreferred stimulus that was paired with

a preferred stimulus also inside the receptive field (Moran and

Desimone, 1985; Recanzone and Wurtz, 2000; Reynolds et al.,

1999; Reynolds and Desimone, 2003). These different effects

of attentional modulation have not previously been explained

within the framework of a single computational model. We

demonstrate here that a model of attention that incorporates

divisive normalization (Heeger, 1992b) exhibits each of these

different forms of attentional modulation, depending on the stim-

ulus conditions and the spread (or selectivity) of the attentional

feedback in the model.

In addition to unifying a range of experimental data within

a common computational framework, the proposed model helps

reconcile alternative theories of attention. Moran and Desimone

(1985) proposed that attention operates by shrinking neuronal

receptive fields around the attended stimulus. Desimone and

Duncan (1995) proposed an alternative model, in which neurons

representing different stimulus components compete and atten-

tion operates by biasing the competition in favor of neurons that

encode the attended stimulus. It was later suggested that atten-

tion instead operates simply by scaling neuronal responses by

a fixed gain factor (McAdams and Maunsell, 1999; Treue and

Martinez-Trujillo, 1999). Treue and colleagues advanced the

‘‘feature-similarity gain principle,’’ that the gain factor depends

on the match between a neuron’s stimulus selectivity and the

features or locations being attended (Treue and Martinez-Trujillo,

1999; Martinez-Trujillo and Treue, 2004). Spitzer et al., 1988

proposed that attention sharpens neuronal tuning curves, and

Martinez-Trujillo and Treue (2004) explained that sharpening is

predicted by their ‘‘feature-similarity gain principle.’’ Finally, Rey-

nolds et al., 2000 proposed that attention increases contrast

gain. Indeed, the initial motivation for the model proposed here

derived from the reported similarities between the effects of

attention and contrast elevation on neuronal responses (Rey-

nolds and Chelazzi, 2004; Reynolds et al., 1999, 2000; Reynolds

and Desimone, 2003).

The proposed normalization model of attention combines

aspects of each of these proposals and exhibits all of these

forms of attentional modulation. Thus, the various models out-

lined above are not mutually exclusive. Rather, they can all be

expressed by a single, unifying computational principle. We

propose that this computational principle endows the brain

with the capacity to increase sensitivity to faint stimuli presented

alone and to reduce the impact of task irrelevant distracters
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when multiple stimuli are presented. We argue that the osten-

sible variety and complexity of the results reported in the litera-

ture emerge from the variety of empirical protocols that were

used, with the results observed in any one experiment depend-

ing on the stimulus conditions and the subject’s attentional

strategy. Finally, we suggest that evolution may have co-opted

previously existing normalization circuits in visual cortex,

enabling attentional selection and its concomitant impact on

behavioral performance.

The Normalization Model of Attention
The three basic components of the model are: the stimulation

field, the suppressive field, and the attention field (a set of Mat-

lab routines that constitute the model can be downloaded from

the authors’ websites: http://www.snl-r.salk.edu/�reynolds/

Normalization_Model_of_Attention/ and http://www.cns.nyu.

edu/heegerlab/). These components are described in detail

below but we begin by providing an intuition for them. The

responses of a population of neurons to a visual stimulus can

be depicted as a ‘‘neural image’’ (Robson, 1980) in which the

brightness at each image location corresponds to the response

of one neuron. Figure 1 depicts such neural images representing

each of the components of the model. In this simulation, two

oriented grating stimuli were presented in the two halves of

the visual field (i.e., in opposite hemifields), both with the

same orientation. Neurons in visual cortex are highly selective

for the spatial position of a visual stimulus, and for a particular

combination of visual features (here, we use orientation as an

example feature, but other features such as motion direction

or combinations of features could be used instead). The ‘‘stim-

ulation field’’ of a neuron in the model characterizes its selec-

tivity, both in terms of spatial position and orientation. The

stimulation field is a theoretical concept that would be equiva-

lent to a neuron’s receptive field only if there were neither

suppression nor attention. Likewise, we use the term ‘‘stimulus

drive’’ to represent what a neuron’s response would be due to

the stimulation field alone, in the absence of suppression and

attention. The response of a visual neuron to a preferred stim-

ulus can be suppressed by the simultaneous presentation of

nonpreferred stimuli. The ‘‘suppressive field’’ characterizes the

spatial positions and features that contribute to this suppres-

sion. The suppressive field pools over a broader range of spatial

locations and features (e.g., orientations) than the stimulation

field. The suppression is divisive such that the stimulus drive

from a preferred stimulus is normalized with respect to (divided

by) the activity in other neurons that respond to the surrounding

context. We use the term ‘‘suppressive drive’’ to represent the

amount of suppression contributing to a neuron’s response for

a particular stimulus and attentional state. The effect of attention

is simulated in our model by taking the stimulus drive for the

entire population of simulated neurons and multiplying it by an

‘‘attention field.’’ The attention field is specified in terms of its

gain for each neuron in the population, i.e., in terms of its spatial

and featural extents. The attention field is multiplied by the stim-

ulus drive before normalization, so it affects both the stimulus

drive and suppressive drive in determining the output firing

rate of each simulated neuron.

The resulting simulated neural responses depend on the size

of the stimulus (relative to the sizes of the stimulation field and

suppressive field), the combination of features that make up

the stimulus, the spatial extent of attention field, and the featural

extent of the attention field. The core idea is that the attention

field reshapes the distribution of activity across the population

of neurons, shifting the balance between excitation and suppres-

sion. For example, consider the case (discussed in further detail

below, Figure 4E) in which two stimuli are presented within
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Figure 1. Normalization Model of Attention
The stimulus drive is multiplied by the attention
field and divided by the suppressive drive to yield
the output firing rates. Left panel depicts the stim-
ulus. A pair of vertically orientated gratings were
presented as input to the model, identical in
contrast, one in each hemifield. Central black
dot, fixation point. Solid circle indicates the recep-
tive field of a model neuron selective for vertical
orientation and centered on the grating stimulus
in the right hemifield. Dashed red circle indicates
the attention field, which was centered on the stim-
ulus on the right. Middle panel depicts the stimulus
drive for a collection of neurons with different
receptive field centers and orientation prefer-
ences. Neurons are organized according to their
receptive field center (horizontal position) and
preferred orientation (vertical position). Brightness
at each location in the image corresponds to the
stimulus drive to a single neuron. Top panel
depicts the attention field when attending to the
stimulus on the right (i.e., corresponding to the
dashed red circle in the left panel). The attentional
field is the strength of the attentional modulation as
a function of receptive field center and orientation
preference. Here, attentional gain varied as a func-
tion of stimulus position, without regard to orienta-

tion. Midgray indicates a value of 1 and white indicates a value greater than 1. The attention field is multiplied point-by-point with the stimulus drive. The suppres-
sive drive (bottom panel) is computed from the product of the stimulus drive and the attention field, and then pooled over space and orientation. The panel on the
right shows a neural image depicting the output firing rates of the population of neurons, computed by dividing the stimulus drive by the suppressive drive. The
stimulus, stimulation field, suppressive field, and attention field all had Gaussian profiles in space and orientation.
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a neuron’s receptive field, one moving in the model neuron’s

preferred direction and the other in the nonpreferred (i.e., oppo-

site) direction. Only the preferred direction contributes to the

stimulus drive but both contribute to the suppressive drive

such that the response of the neuron to the pair is less than it

would be to the preferred direction on its own. Consider what

happens when attending to the preferred direction. This multi-

plies the stimulus drive from the preferred direction stimulus in

a manner that is equivalent to increasing its contrast. The

suppression from the nonpreferred direction is now less effective

because attention has shifted the balance of excitation and

suppression in favor of the preferred direction, leading to a larger

output firing rate. On the other hand, attending to the nonpre-

ferred motion shifts the balance in favor of the nonpreferred stim-

ulus, increasing its suppressive effect and leading to a smaller

output firing rate.

The model is presented as a mathematical abstraction,

without specifying the underlying biophysical mechanisms or

neural circuitry. Although we list some possible mechanisms

(see Discussion), detailing the biophysical mechanisms was

very specifically not our goal. Indeed, we would argue that it is

premature to follow a reductionist path toward characterizing

the underlying mechanisms (especially without first demon-

strating and testing the phenomenological validity of the model),

and doing so could obscure the emergent simplicity of the

phenomena (Laughlin, 2005). We use simulations to illustrate

the qualitative properties of the model and its ability to account

for patterns observed in experimental data. These are supple-

mented with mathematical derivations of limiting cases that

clarify the reasons why the model exhibits these properties.

Stimulation Fields and Stimulus Drive

The stimulation field of a simulated neuron in our model is the

range of spatial positions and orientations that can evoke an

excitatory response. Consider a population of orientation-

selective visual neurons (e.g., in visual cortical area V4), whose

receptive fields cover the visual field. Each neuron can be char-

acterized by its receptive field center and its orientation prefer-

ence. We assume, for simplicity, that the response properties

of these neurons are otherwise identical, that they all have

the same receptive field size and shape (i.e., ignoring cortical

magnification) and identical orientation tuning curve band-

widths. Also for simplicity, we treat only one dimension of

spatial position (e.g., assuming that the neurons’ receptive

fields are all centered along an arc of equal eccentricity). These

simplifying assumptions are not strictly necessary but make it

easier to describe the model. Figure 1 (middle panel) depicts

an example of the stimulus drive for this simulated population

of V4 neurons.

Suppressive Fields and Normalization

The suppressive field of a neuron in our model is the range of

spatial positions and orientations that can suppress the

response. Whereas the stimulus drive is assumed to be selective

for feature and location, suppression is assumed to be largely

nonspecific. As a result, a given stimulus can exert a suppressive

effect on neurons tuned for other features or positions. This is

consistent with data in V1, for example, where the responses

to an optimally oriented stimulus are diminished by superimpos-

ing an orthogonal stimulus, that is ineffective in driving the cell

when presented alone (Bauman and Bonds, 1991; Bonds,

1989; Carandini et al., 1997; Morrone et al., 1982). V1 neurons

are likewise suppressed by stimuli at surrounding locations, ex-

tending beyond the stimulation field (Allman et al., 1985; Bair

et al., 2003; Blakemore and Tobin, 1972; Cavanaugh et al.,

2002a, 2002b; DeAngelis et al., 1994; Levitt and Lund, 1997;

Nelson and Frost, 1985). Suppression can also be observed

when a preferred and a nonpreferred stimulus are presented at

separate locations within a neuron’s stimulation field (Reynolds

and Desimone, 2003; Snowden et al., 1991). There is an exten-

sive literature on such suppressive phenomena in V1 (for a review

of the early literature, see Heeger, 1992b), in ventral stream areas

V4 and IT (Miller et al., 1993; Missal et al., 1997; Reynolds et al.,

1999; Richmond et al., 1983; Rolls and Tovee, 1995; Sato, 1989;

Zoccolan et al., 2005), and in dorsal stream visual cortical areas

MT and MST (Heuer and Britten, 2002; Recanzone et al., 1997;

Treue et al., 2000).

The normalization model of visual cortical responses was

introduced in the early 1990s to explain a variety of such

suppressive phenomena evident in the response properties of

V1 neurons (Albrecht and Geisler, 1991; Carandini and Heeger,

1994; Carandini et al., 1997; Heeger, 1991, 1992a, 1992b,

1993; Nestares and Heeger, 1997; Robson, 1988; Tolhurst and

Heeger, 1997a, 1997b) and later extended to explain suppres-

sion in other visual cortical areas (Heeger et al., 1996; Simoncelli

and Heeger, 1998). The normalization model posits that the stim-

ulus drive is suppressed, effectively normalizing (dividing) the

response of each neuron by the sum total stimulus drive across

a population of neurons.

Normalization is computed by taking the stimulus drive (E) of

each simulated neuron and dividing it by a constant (s) plus

the suppressive drive (S). The constant s determines the

contrast gain of the neuron’s response. The normalized

responses are then subjected to a threshold (T), simulating the

effect of spiking threshold, and the firing rate of the simulated

neuron is taken to be proportional to the amount of response

exceeding the threshold. This threshold model of spike genera-

tion, although oversimplified, is a reasonable approximation for

the relationship between membrane potential fluctuation and

firing rate (Anderson et al., 2000; Carandini, 2004a; Carandini

and Ferster, 2000; Finn et al., 2007; Granit et al., 1963). The re-

sulting firing rates (R) of the population of simulated neurons

can be expressed as a function of the stimulus drive and

suppressive drive:

Rðx;qÞ= j Eðx;qÞ=½Sðx;qÞ+ s�jT; (1)

where x and q represent the receptive field centers and orienta-

tion preferences, respectively, of each neuron in the population,

j $ jT indicates rectification with respect to the threshold T, and

where S and s are nonnegative. The suppression is pooled

over spatial positions and orientations such that it can itself be

expressed in terms of the stimulus drive. Specifically, for the

simulations reported here, we computed the suppression from

the stimulus drive (ignoring the effect of attention for the time

being but see below), as an average over a range of receptive

field centers and orientation preferences:
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Sðx;qÞ= sðx;qÞ � Eðx;qÞ; (2)

where s(x,q) is the suppressive field (i.e., the extent of pooling

over space and orientation) and * is convolution. Figure 1 (bottom

panel) shows an example of the suppressive drive. We have

assumed for our simulations that the spatial pooling in the

suppressive field is independent of orientation and vice versa

(i.e., separable convolution), although that need not be the

case. We have also assumed that the integral of s(x,q) equals

1. The final normalized responses (i.e., the output firing rates)

are also shown in Figure 1 (right panel).

The resulting normalized responses can be expressed in terms

of stimulus contrast:

Rðc; x;qÞ=
�
�Eðx;q;cÞ=½sðx;qÞ � Eðx;q; cÞ+ s�jT (3)

rðcÞ= a c=ðc + sÞ;

where c is stimulus contrast and E(x,q; c) is the stimulus drive of

the population of neurons evoked by contrast c. For the case

considered here in which the stimulus drive is a linear summation

of the visual stimulus contrast, E(x,q; c) is proportional to c. The

contrast-response function, r(c) = R(c; x,q), is the output firing

rate as a function of contrast for a single neuron in the population

with x and q representing, respectively, its receptive field center

and orientation preference, and with the stimulus centered in its

receptive field. We use the simplified notation, r(c), instead of

R(c; x,q), because each neuron in the population exhibits a similar

dependence on contrast, and to draw a distinction between the

collected responses of a population of neurons represented by

capital R and the responses of a single neuron represented by

lower case r. The response gain, a, determines the maximum

attainable response. Factors that affect a include the stimulus

orientation and location relative to the preferred orientation and

receptive field center of the simulated neuron. The contrast

gain, s, determines the contrast at which the response achieves

half the maximum. The resulting neural responses saturate (level

off) at high stimulus contrasts, due to normalization, regardless

of whether the high contrast stimulus is preferred or nonpre-

ferred (Heeger, 1991; Heeger, 1992b), in agreement with exper-

imental results (Albrecht and Hamilton, 1982). That is, when the

contrast is high (c >> s), the responses are approximated by

r(c) za. Depending on the choice of threshold, the rectification

can approximate a power law such that c in the above equation

gets replaced with cn (Anderson et al., 2000; Finn et al., 2007).

This yields a contrast-response function with a steeper slope

at the rising part of the curve and more complete saturation at

high contrasts. For the purposes of this paper, the simulations

were performed with an exponent of 1 but higher exponents

would be needed to fit electrophysiological measurements.

The balance between stimulus drive and suppressive drive in

the normalization model depends on stimulus size. A large stim-

ulus (e.g., an oriented grating pattern covering the entire visual

field) fills both the stimulation and suppressive fields and hence

evokes equal excitation and suppression (because the integral of

s(x,q) equals 1, as noted above). A small stimulus, on the other

hand, can evoke a strong stimulus drive but a relatively weak

suppressive drive. This can be expressed as a modification of

Equation 3:

rðcÞ= a c=ðc + b cs + sÞ; (4)

where c is the contrast of a center stimulus, cs is the contrast of

a surround stimulus, and b is a scale factor (between 0 and 1) on

the suppression from the surround stimulus. Making a stimulus

smaller is equivalent to setting the surround contrast to zero

which decreases the suppressive drive. Increasing the size of

the stimulus by making cs nonzero increases the suppression

which decreases the output firing rate. As an aside, we note

that this model predicts an interaction between contrast and

stimulus size (Cavanaugh et al., 2002a), thereby explaining the

observation that neurons prefer smaller stimuli at higher

contrasts (Kapadia et al., 1999; Sceniak et al., 1999). We rely

on an analogous shift in the balance between excitation and

suppression to explain how attention can yield a change in either

contrast gain or response gain depending on the stimulus size

and the spatial extent of the attention field (see below).

Attention Fields and Attentional Gain

The effect of attention is simulated in our model by taking the

stimulus drive across the population of neurons and multiplying

it point-by-point by an attention field (Figure 1). In its simplest

form, the attention field is 1 everywhere except for a small range

of spatial positions and feature values where the attentional gain

is greater than 1 (Figure 1, top panel). Its effect in our model is to

multiply the stimulus drive, which is then inherited by the

suppressive drive:

Rðx;qÞ= j ½Aðx;qÞEðx;qÞ�=½Sðx;qÞ+ s�jT (5)

Sðx;qÞ= sðx;qÞ � ½Aðx;qÞ Eðx;qÞ�; (6)

where A(x,q) is the attention field. Applying the attention field in

the model can yield either a change in response gain, a change

in contrast gain, or a combination of the two, depending on the

stimulus size and the extent of the attention field relative to the

sizes of the stimulation and suppressive fields.

First, consider a case in which the stimulus is small and the

attention field is large (Figure 2A). The responses of a model

neuron can be approximated as:

Rðc; x;qÞ= jg Eðx;q; cÞ=½sðx;qÞ � ðg Eðx;q; cÞÞ+ s�jT (7)

rðcÞ= a ðgcÞ=ðgc + sÞ

= a c=ðc + s=gÞ;

where g > 1 is the peak gain of the attention field, and the other

symbols are defined above. The attention field A(x,q) can be

approximated by the constant g in Equation 7 because the atten-

tion field is assumed to be large; this approximation would be

exact if the attention field was constant for all x and q. Under

these conditions, the effect of attention is simply to multiply
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the stimulus drive by a constant, which predicts a pure change in

contrast gain by a factor of g. This appears as a leftward shift of

the contrast-response function, plotting responses versus the

logarithm of contrast (Figure 2A). In other words, the attentional

modulation (percentage change in response when the stimulus is

attended) is larger for contrasts corresponding to the rising

portion of the neuron’s contrast-response function than for satu-

rating contrasts (Figure 2A, dashed gray curve).

Next, consider the case in which the stimulus is large (e.g.,

filling both the stimulation and suppressive fields) and the atten-

tion field is small relative to the suppressive field (Figure 2B). In

this case, the attention field not only multiplies the stimulus drive

but also changes the effective spatial spread of the stimulus

drive akin to making the stimulus smaller. The responses of

a model neuron, with the stimulus and the attention field

centered on its receptive field, can be approximated as:

rðcÞ= a ðgcÞ=ðgc + b c + sÞ; (8)

where g > 1 is the peak gain of the attention field, 0 < b < 1 is

a scale factor on the suppressive drive from the region

surrounding the stimulation field (see Equation 4), and the

surround contrast (cs in Equation 4) equals the center contrast

(cs = c). The attentional gain, g, is multiplied only by the center

contrast because the attention field is small; this approximation

would be exact if A(x,q) = g only for the neuron being recorded

and 1 for all other receptive field centers and orientation prefer-

ences. For low contrasts (c << s), Equation 8 is approximated by

r(c) za g c / s, such that increasing g simply scales the predicted

responses. For high contrasts (c >> s), Equation 8 isapproximated

by r(c) za g’, where g’ = g / (g + b), which is independent of c

because the responses saturate at high contrasts. But again,

increasing g predicts larger responses. Figure 2B shows a simula-

tion result that approaches the limit of a pure response gain, using

a relatively large stimulus and a small attention field. The contrast-

response function is shifted upward (not leftward), and the atten-

tional modulation is large across the full range of contrasts

(Figure 2B, dashed gray curve). For the simulations in Figures 2A

and 2B, only the stimulus size and the attention field size differed;

all other model parameters were the same (Table 1).

A combination of response gain and contrast gain can also be

realized by an appropriate choice of stimulus size and attention

field size (see below, Figure 3F). Feature-based attention can

give rise to analogous effects, depending on the number of
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Figure 2. The Normalization Model of Attention Exhibits
Qualitatively Different Forms of Attentional Modulation, Depending
on the Stimulus Size and the Size of the Attention Field
Each panel shows contrast-response functions for a simulated neuron, when
attending to a stimulus within the neuron’s receptive field and when attending
to a stimulus in the opposite hemifield.
(A) Contrast gain for small stimulus size and large attention field. Red curve,
simulated responses as a function of contrast when the stimulus in the recep-
tive field was attended. Blue curve, responses when attending toward the
opposite hemifield. Attentional modulation is indicated by the dashed gray
curve, which quantifies the percentage increase in the responses when the
stimulus within the neuron’s receptive field was attended versus not. The stim-
ulus was 0.6 times the size to the stimulation field and the attention field was six
times the size of the stimulation field (not drawn to scale, see Table 1 for simu-
lation parameters).
(B) Response gain for larger stimulus size and smaller attention field. In
comparison to (A), the stimulus size was 5/3 times larger (i.e., equal to the
size of the stimulation field) and the attention field was 10 times smaller (i.e.,
about 2/3 the size of the stimulation field). All other model parameters were
identical in both panels (Table 1).

Table 1. Model Parameters

Figure Panel Stimulus Attention Field Baseline

Size Size

Tuning

Width (Deg) Peak Mod Unmod

1 3 30 – 2

2A 3 30 – 2

2B 5 3 – 2

3C 5 30 – 2 X X

3F 7 7 – 2 X

4C 5 5 20 5

4E 5 5 20 5

5C 10 10 – 2

6C 10 30 60* 2

7C 5 5 45* 5

Stimuli and attention fields varied across simulations, as listed in the

table. Spatial sizes are in arbitrary units; only the relative values are mean-

ingful. For simulations with two or more stimuli, all had the same size. For

all simulations, the size of the stimulation field was 5 and the size of the

suppressive field was 20. Orientation and direction tuning curves were

Gaussian functions; tuning widths are listed in degrees corresponding

to the standard deviation of the Gaussian. For simulations of experiments

in V4, involving oriented grating stimuli, the orientation tuning width of the

stimulation field was 30� and the tuning width of the suppressive field was

180�. For simulations of experiments in MT/MST involving moving stimuli,

these values were doubled to cover 360� of motion directions. A dash (–)

for the attention field tuning width means that all orientations or directions

were attended equally. An asterisk (*) for Figures 6C and 7C means that

the attention field tuning width was as listed when attending the moving

stimuli, but was unselective (all directions attended equally) when atten-

tion was directed to the fixation point. Baseline activity added to the

stimulus drive was modulated by attention (marked by X under ‘‘Mod’’).

Baseline activity added after normalization was not modulated by atten-

tion (marked by X under ‘‘Unmod’’).
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different feature values (e.g., orientations) in the stimulus, and

the featural extent of the attention field (i.e., the range of orienta-

tions attended) relative to that of the stimulation and suppressive

fields (see below, Figure 4).

In principle, the attention field can have any possible distribu-

tion over space and feature dimensions, each corresponding to

a different behavioral ‘‘strategy.’’ Both the spatial extent and the

featural extent (range of orientations) of the attention field can

vary depending on the stimulus and task. The attention field

could also, in principle, be less than 1 for some spatial locations

and orientations leading to suppression at unattended locations

(although this is not necessary to account for attentional

suppression, which is mediated naturally through the suppres-

sive field). The attention field need not be unimodal; multiple

peaks would simulate attending to multiple locations simulta-

neously (Cavanagh and Alvarez, 2005; McMains and Somers,

2004; Mitchell et al., 2007). The attention field can be narrow in

space and broad in orientation (spatial attention), or it can

instead be narrow in orientation and broad in space (feature-

based attention). The spatial extent of the attention field is

related to the spatial bias in the biased competition model of

attention (Desimone and Duncan, 1995). It is also related to the

‘‘spotlight’’ (Posner et al., 1980) or ‘‘zoom lens’’ in descriptive

models of attention (Eriksen and St. James, 1986; Eriksen and

Yeh, 1985). The featural extent of the attention field is related

to the feature bias in the biased competition model and to the

‘‘feature-similarity gain principle’’ that has been proposed as

a model for the effects of feature-based attention (Boynton,

2005; Martinez-Trujillo and Treue, 2004; Treue and Martinez-

Trujillo, 1999). However, the attention field differs from the

feature-similarity gain principle, in that the effect of attention in

our model does not directly alter firing rate by a scaling factor,

being instead mediated through the normalization computation.

A Unified Account of Attentional Modulation
Attentional Modulation of the Contrast-Response

Function

We begin by considering three studies that have measured the

effect of attention as a function of contrast. Two of these were

conducted in macaque area V4 with a single stimulus inside

the receptive field (Reynolds et al., 2000; Williford and Maunsell,

2006). The third study (Martinez-Trujillo and Treue, 2002), which

was conducted in macaque area MT with two stimuli in the

receptive field, is discussed below. In the first of these studies

(Reynolds et al., 2000), the monkey was cued to attend either

to a sequence of grating stimuli within the receptive field, or on

separate trials, to a location in the opposite hemifield (Figure 3A).

The animal’s task was to detect a differently oriented target at

the cued location. Figure 3B shows the average responses of

39 neurons that were modulated by attention, plotted as a func-

tion of contrast. Contrasts were selected for each neuron such

that the lowest nonzero contrast was below the neuron’s
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Figure 3. Attentional Modulation of
Neuronal Contrast-Response Functions
(A) Stimulus and task used by Reynolds et al.
(2000) while recording neural activity in V4.
Sequences of gratings were presented to the left
and right visual fields, one of which was positioned
within the receptive field of the recorded neuron.
Monkeys were cued to attend either to the stim-
ulus sequence in the receptive field (dashed red
circle) or the stimulus sequence in the opposite
hemifield (dashed blue circle), to detect a target
that appeared in the sequence.
(B) Attentioncausedthe largestpercentage increase
infiring ratesat low contrast (adapted from Reynolds
et al., 2000). Red curve and data points, responses
as a function of contrast, when attention was
directed to stimuli in the receptive field. Blue curve
and data points, responses to the identical stimuli
when unattended. Dashed gray curve, percentage
increase in firing rate at each contrast.
(C) Normalization model of attention can exhibit
similar results. Stimuli, receptive fields, and atten-
tion fields are not drawn to scale; Simulation
parameters are listed in Table 1.
(D) Stimulus and task used in a similar experiment
by Williford and Maunsell (2006), also while
recording in V4.
(E) Attention caused neither a pure contrast gain
change nor a pure response gain change (adapted
from Williford and Maunsell, 2006). Rather, the
greatest percentage increase in firing rates was
at low contrasts (dashed gray curve), but with the
largest absolute increase in firing rates at high
contrasts (compare red and blue curves). Error
bars, ± 1 SEM across the population of neurons.
(F) Normalization model of attention can exhibit
similar results. The simulation was identical to
that in (C) except (1) the stimulus was larger and
attention field was smaller and (2) additional base-
line activity was added for (C) (see Table 1).
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contrast threshold, when attention was directed away from the

receptive field stimulus, and the highest contrast tested was at

or above saturating contrast. Consistent with the idea that atten-

tion changes contrast gain, this study found that there was

a reduction in contrast threshold, only modest attention effects

at high contrast, and large attention-dependent increases in

firing rates at intermediate contrasts (Figure 3B, dashed gray

curve).

Williford and Maunsell (2006) used a similar stimulus and task

(Figure 3D) but found more substantial increases in firing rates at

high contrasts (Figure 3E). A key subset of the data, shown in the

figure, corresponded to those neurons with responses that satu-

rated at high contrasts, because those neurons had the potential

to distinguish between changes in contrast gain (for which the

largest attention effects would be evident at intermediate

contrasts) and response gain (for which the largest effects would

be evident at the highest contrasts). Attention did not simply

modulate contrast gain; there were substantial increases in firing

rates at the highest contrasts. Nor were the data consistent with

a pure response gain change, as attention did not have a fixed

multiplicative effect on firing rates across contrasts. Rather,

the effect of attention was a monotonically decreasing function

of contrast, from �80% at low contrasts to �20% at high

contrasts (Figure 3E, dashed gray curve).

How can these data, which differ from each other, be recon-

ciled, and what are their implications for models of attention?

Contrast gain and response gain are both properties of the

normalization model of attention (Figures 2A and 2B, respec-

tively). The model can also yield effects that are intermediate

between contrast gain and response gain. The particular result

obtained with the model depends on several factors, including

the size of the stimulus and the size of the attention field, both

relative to the sizes of the stimulation and suppressive fields.

With a small stimulus and a large attention field, the model

predicts results (Figure 3C) like those reported by Reynolds

et al. (2000). By changing the size of the stimulus and the size

of the attention field (such that both are roughly equal in size to

the stimulation field), the model predictions (Figures 3F) are

similar to the observations of Williford and Maunsell (2006).

Therefore, the normalization model of attention is, in principle,

consistent with the results from both of these experiments.

Although no attempt was made to fit the data, the model

parameters were adjusted to produce simulation results in

Figures 3C and 3F that resembled the experimental results. In

particular, baseline activity was added to the model simulations.

A small baseline was added to the stimulus drive, for both

Figures 3C and 3F, assuming that attention modulates sponta-

neous activity from afferent neurons just as it is assumed to

modulate stimulus-evoked activity. This resulted in an atten-

tion-dependent elevation in the baseline firing rates of the

simulated neurons, as has been reported both in single-unit elec-

trophysiology and fMRI studies (Chawla et al., 1999; Haenny

et al., 1988; Kastner et al., 1999; Luck et al., 1997; Offen et al.,

2008; Ress et al., 2000; Reynolds et al., 2000; Silver et al.,

2007). For Figure 3C, an additional baseline response was added

after normalization, yielding a component of spontaneous
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Figure 4. Attentional Modulation of
Neuronal Contrast-Response Functions
with Two Stimuli in the Receptive Field
(A) Stimulus and task used by Martinez-Trujillo and
Treue (2002) while recording in MT. The contrast of
the preferred direction stimulus (indicated by the
upward arrow) within the receptive field was
systematically varied across trials, whereas the
contrast of the nonpreferred stimulus (indicated
by the downward arrow) was held fixed. The
monkey was cued to attend either the nonpreferred
stimulus in the receptive field (dashed red circle) or
the stimulus in the opposite hemifield (dashed blue
circle).
(B) Attention caused predominantly a change in
contrast gain. Red curve and data points,
responses as a function of contrast, when attention
was directed to the nonpreferred stimulus in the
receptive field. Blue curve and data points,
responses to the identical stimuli, when attending
the opposite hemifield. Error bars, ± 1 SEM across
trials for a single neuron.
(C) Model simulation exhibiting results similar to
those observed experimentally.
(D) Complementary experiment with two stimuli
placed within the receptive field, one preferred
and the other nonpreferred. The contrasts of the
two stimuli covaried (always identical to one
another).
(E) Simulated neuronal responses were larger
when attention was directed to the preferred-
direction stimulus (green curve) than when it was
directed to the nonpreferred stimulus (red curve).
The effect of attention was approximated by
a response gain change (multiplicative scaling).
Simulation parameters were identical to those in
(C) (Table 1).
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activity that was not modulated by attention. Both of these

components of baseline activity were small, but they were

needed so that the simulations exhibited attentional modulation

as a function of contrast (Figures 3C and 3F, dashed gray curves)

like that observed in the experimental results (Figures 3B and 3E,

dashed gray curves). Other than the stimulus size, attention field

size, and the unmodulated component of the baseline activity,

the rest of the simulation parameters were identical (Table 1).

These model simulations suggest that the experimental results

might have differed in these two studies primarily because of

differences in the stimulus and attention field sizes. In support

of this suggestion, the stimulus sizes were different from one

another in the two studies. Reynolds et al. (2000) used small

(0.4� 3 1.5�–2�) stimuli such that most of the contrast energy

was concentrated within a small region of visual space, and

they recorded from neurons with relatively large receptive fields

(centered in peripheral regions of the visual field). Williford and

Maunsell (2006) instead matched the stimulus sizes to the recep-

tive fields, filling the classical receptive fields with grating

patches. Therefore, their stimuli were larger, with respect to

the receptive fields, than those used in the earlier study. We

speculate that the attentional strategy may also have been

different. In the Reynolds et al. study, monkeys maintained fixa-

tion throughout the trial and released a manual lever upon

appearance of the target. The monkeys in Williford and Maun-

sell’s task were required to maintain fixation while planning an

accurate saccade to the target. Given the evidence that the

oculomotor system provides attentional feedback signals (Cav-

anaugh and Wurtz, 2004; Ekstrom et al., 2008; Moore and Arm-

strong, 2003; Moore and Fallah, 2001; Muller et al., 2005; Win-

kowski and Knudsen, 2008), the requirement to saccade

accurately to the target in the Williford and Maunsell study might

plausibly have caused the attention fields to be more narrowly

focused in their study than in the Reynolds et al. study. Additional

experiments will be needed to determine if these factors account

for the observed differences, specifically designed to control the

animal’s attentional strategy (i.e., the spatial extent of the atten-

tion field).

Attentional Modulation of the Contrast-Response

Function with Two Stimuli in the Receptive Field

Martinez-Trujillo and Treue (2002) measured contrast-response

functions in macaque area MT with two stimuli in the receptive

field (Figure 4A). One stimulus moved in the preferred direction

and the other moved in the nonpreferred (opposite) direction.

The contrast of the preferred direction stimulus within the recep-

tive field was systematically varied across trials, whereas the

contrast of the nonpreferred stimulus was held fixed. There

were also two stimuli placed at a symmetrical location in the

opposite hemifield, with the same two directions of motion.

The monkey’s task was to detect a change in speed or direction

of one of the stimuli. The monkey was cued on half the trials to

attend to the nonpreferred stimulus within the receptive field,

while ignoring the other three stimuli. On other half, the monkey

was cued to attend to the stimulus in the opposite hemifield

moving in the same direction of motion as the nonpreferred stim-

ulus. In other words, the contrast-response function of the

preferred stimulus was measured under two attentional states,

both of which involved attending to the nonpreferred direction

of motion, either at a location within the receptive field or at

a distant (opposite hemifield) location. Martinez-Trujillo and

Treue (2002) reported predominantly a change in contrast gain

(Figure 4B).

Similar results can be achieved with the normalization model

of attention (Figure 4C). The reason for this is that attending to

the nonpreferred stimulus increases only the suppressive drive.

Because the contrast of the nonpreferred stimulus was fixed,

this increase in suppressive drive is the same for all stimulus

conditions. This is equivalent to adding a constant to the denom-

inator, i.e., changing the contrast gain (see Supplemental Mate-

rial available online for derivation).

The model exhibits a very different pattern of behavior if we

slightly alter the stimuli and task as illustrated in Figure 4D. In

this simulation, attention was directed to one of the two stimuli

within the receptive field, either the preferred stimulus or the non-

preferred stimulus. The contrasts of the preferred and nonpre-

ferred stimuli covaried from trial to trial, so they were always

identical to one another. Figure 4E shows the result of simulating

this experiment; the contrast-response function when attending

to the preferred stimulus (Figure 4E, green curve) was approxi-

mately a scaled copy of that observed when attention was

instead directed to the nonpreferred stimulus (Figure 4E, red

curve). The model predicts predominantly a response gain

change under these conditions (see Supplemental Material for

derivation) because attending to the preferred versus nonpre-

ferred stimulus shifts the balance of excitation and suppression

in a manner that is directly analogous to the effect of spatial

attention with a large stimulus and small attention field (Figure 2B

and Equation 8). Here, the stimulus is large in its featural extent

(including opposite motion directions) instead of being large in

space, and the attention field is small in its featural extent

(focusing on one of the two motion directions) instead of being

small in space. This prediction of the model could be tested by

conducting both experiments and making within-cell compari-

sons of the effects of attention on contrast response functions.

Spatial Attention and Multiplicative Scaling of Neuronal

Tuning Curves

One of the most well-studied forms of attentional modulation,

which helped motivate the proposal that attention simply scales

firing rates, is attention-dependent scaling of neuronal tuning.

Motter (1993) recorded neuronal responses in macaque areas

V1, V2, and V4 to stimuli that varied in orientation. He found

that directing attention to the stimulus in the receptive field often

increased neuronal firing rates and that this increase tended to be

largest for stimuli presented near the peak of the neuron’s orien-

tation tuning curve. In a now classic study, McAdams and Maun-

sell (1999) quantified this effect in area V4 using the experimental

protocol illustrated in Figure 5A. On some trials, monkeys at-

tended to a grating in the receptive field of the recorded neuron,

to report whether two successive gratings were identical or

differed in orientation by 90�. On other trials, attention was

instead directed to a colored blob appearing in the opposite

hemifield, to report whether successive stimuli differed in color.

The grating orientation was varied from one trial to the next, to

measure a full orientation-tuning curve for trials in which the

grating was either attended or ignored. McAdams and Maunsell

(1999) measured the neuron’s orientation tuning curve and

Neuron 61, January 29, 2009 ª2009 Elsevier Inc. 175



Neuron

Review
A B C1.0

N
or
m
al
iz
ed
R
es
po
ns
e

0.5

0.0

N
or
m
al
iz
ed
R
es
po
ns
e

Attention
Fields StimuliReceptive

Field

Adapted from McAdams & Maunsell (1999)

Attend stimulus in receptive field
Attend stimulus contralateral to receptive field

Figure 5. Spatial Attention Causes
a Multiplicative Scaling of Tuning Curves
(A) Stimulus and task. On some trials, monkeys at-
tended to the grating in the receptive field of the
neuron being recorded (dashed red circle) to
report whether two successive gratings were
identical or differed in orientation by 90�. On other
trials, attention was instead directed to a colored
blob appearing in the opposite hemifield (dashed
blue circle) to report whether successive stimuli
differed in color.
(B) Orientation tuning curves averaged across
a population of V4 neurons, with and without
attention (adapted from McAdams and Maunsell,
1999). These curves were obtained by fitting
each neuron’s tuning curve with a Gaussian, shift-
ing the neuron’s preferred orientation to align all

tuning curves and then averaging the Gaussian fits. Red indicates orientation tuning when attention was directed to stimuli in the receptive field, to perform
the orientation discrimination task. Blue, orientation tuning when attention was directed away from the receptive field to perform the color discrimination
task. Error bars, ± 1 SEM across the population of neurons.
(C) Model simulation yielded similar results; multiplicative scaling of the tuning curve when spatial attention was directed to a stimulus in the receptive field. See
Table 1 for simulation parameters.
examined how it changed with attention. Consistent with

Motter’s earlier report, they found that attention scaled the orien-

tation tuning curve, without changing its width (Figure 5B). Treue

and Martinez-Trujillo (1999) found a similar result in area MT for

direction tuning. This elegant experiment focused primarily on

feature-based attention, as opposed to spatial attention, but

they also quantified the effect of spatial attention after carefully

controlling for any effects of feature-based attention, and found

that spatial attention scaled neuronal tuning curves.

The normalization model of attention accounts for this scaling

naturally (Figure 5C). The normalization component of the model

has, in fact, been used to account for an analogous finding,

scaling of tuning curves with increasing contrast (Heeger,

1992b; Reynolds and Chelazzi, 2004). The attention field in this

simulation was broad (unselective) for orientation, so the atten-

tional gain depended only on spatial position (as in Figure 1,

top panel). In addition, the suppressive field was broad in orien-

tation. Because of this, the responses of the simulated neurons

can be approximated as a product of two functions, one that

depends on contrast (the contrast-response function) and the

other that depends on orientation (the orientation tuning curve).

Attending to stimuli in the receptive field produced a larger

contrast gain but with no effect on the shape of the orientation

turning curve, such that the simulated responses were a multipli-

catively scaled copy of the orientation tuning curve (see Supple-

mental Material for derivation).

Feature-Based Attention and Nonmultiplicative Scaling

of Neuronal Tuning

Spitzer, Desimone, and Moran (Spitzer et al., 1988) proposed

that attention can alter the sharpness of orientation tuning.

Monkeys were trained to perform an orientation discrimination

task. Spitzer and colleagues recorded neuronal responses in

macaque area V4 as monkeys performed two versions of the

task: an easy version in which the animals had to discriminate

large orientation differences (45�) and a hard version in which

the orientation differences were smaller (22.5�). They found in

the more difficult task that neuronal responses were larger,

and that orientation tuning was narrower. McAdams and Maun-

sell (1999) noted that this finding was inconsistent with their

observation that attention scales orientation tuning curves in V4.

However, a pair of studies conducted by Martinez-Trujillo and

Treue suggests that this discrepancy may be attributable to

differences in attentional strategy. In one study (Treue and Mar-

tinez-Trujillo, 1999), feature-based attention was matched

across conditions and they found a multiplicative scaling of

tuning. A subsequent study (Martinez-Trujillo and Treue, 2004)

varied feature-based attention and concluded that attention

increased the gain of neurons tuned for the attended direction

of motion while decreasing the gain of neurons for which the at-

tended direction was nonpreferred. They concluded that this

sharpened the pattern of activity across the population of

neurons with receptive fields centered on the stimulus. The

experimental protocol is illustrated in Figure 6A. A pair of stimuli

were presented simultaneously while recording responses of

a neuron in visual cortical area MT. One of the stimuli was in

the receptive field of the recorded neuron and the other was in

the opposite hemifield. The two stimuli moved in the same direc-

tion on each trial, but this motion direction varied from trial to

trial. Spatial attention was controlled by directing the monkey

to attend on all trials away from the receptive field stimulus,

either to the fixation point, or to the stimulus in the opposite

hemifield from the receptive field. With spatial attention under

control, the effect of manipulating feature-based attention was

measured. On half the trials, feature-based attention was

directed to a motion direction defined by the stimulus in the

opposite hemifield, which matched the direction of motion inside

the receptive field. On the other half, monkeys were cued to

attend the fixation point, i.e., to ignore the direction of motion.

Consistent with earlier reports of feature-based attention (Che-

lazzi et al., 1993, 1998; Haenny et al., 1988; Haenny and Schiller,

1988; Maunsell et al., 1991; Motter, 1994a, 1994b; Treue and

Martinez-Trujillo, 1999), responses were elevated when

feature-based attention was directed to a stimulus moving in

the neuron’s preferred direction of motion and reduced when

attention was directed to the opposite (nonpreferred) direction

(Figure 6B).

The model can exhibit a comparable increase in responses

when attending the neuron’s preferred stimulus, and a reduction

in responses when attending the opposite (nonpreferred) stim-

ulus. This is illustrated in Figure 6C, which shows the pattern of
176 Neuron 61, January 29, 2009 ª2009 Elsevier Inc.
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Figure 6. Feature-Based Attention Can
Cause a Sharpening of Tuning Curves
(A) Stimulus and task. A pair of stimuli were pre-
sented simultaneously while recording responses
of a neuron in visual cortical area MT. One stimulus
was in the receptive field of the recorded neuron
and the other was in the opposite hemifield. The
directions of the two stimuli were yoked, i.e.,
they always moved in the same direction. The
monkey was cued to attend either to the fixation
point (dashed blue circle), or to the stimulus in
the opposite hemifield (dashed red circle) to
detect a change in speed or direction. That is,
spatial attention was always directed away from
the receptive field, but feature-based attention
was matched to the stimulus in the receptive field
on half the trials.

(B) Feature-based attention caused a sharpening of motion direction tuning (adapted from Martinez-Trujillo and Treue, 2004). Blue, responses when attention was
directed to the fixation point. Red, responses when attention was directed to the stimulus in the opposite hemifield. Error bars, ± 1 SEM across trials for a single neuron.
(C) Model simulations yielded similar results. Blue, responses of a model neuron when the attention field was flat (equal) for all motion directions, and spatial
attention was directed away from the model neuron’s receptive field. Red, responses when attention was again directed away from the simulated neuron’s
receptive field but to the same direction of motion as the stimulus in the receptive field. See Table 1 for simulation parameters.
activity across the population of neurons with receptive fields

centered on the stimulus in the right hemifield but tuned to all

different motion directions, or equivalently the tuning curve of

one neuron in response to all different motion directions. To

simulate attention to the fixation point, the attention field was

selective for the location of the fixation point, but was unselective

for motion direction. To simulate attention to the moving stim-

ulus, feature-based attention was assumed to be spatially

invariant, and spatial attention was assumed to be invariant to

motion direction. This corresponded to a cross-shaped attention

field, with a peak at the attended location extending over all

motion directions and a superimposed peak at the attended

motion direction that extended over all positions. With feature-

based attention restricted to a direction of motion that matched

that of the stimulus in the receptive field, tuning was narrower

because the stimulus drive was multiplied by the attention field

which was itself selective for motion direction (see Supplemental

Material for derivation).

The model thus offers a way to reconcile different conclusions

that have been reached about whether attention simply scales

firing rates or sharpens tuning curves. The predictions of the

model depend on the attentional strategy that is used to perform

a given task. A purely spatial attention strategy, in the model,

corresponds to an attention field that is constant (flat) across

feature dimensions (orientation, direction of motion, etc.) but

selective for spatial position. This causes a simple scaling of

tuning curves (Figure 5). A purely feature-based attention

strategy corresponds to an attention field that is selective for

a feature but not selective for spatial position. This causes

a sharpening of tuning (Figure 6). These different attention strat-

egies yield different results, underlining the importance of

controlling task strategy, as was done in the two Treue and

Martinez-Trujillo studies.

Attentional Modulation of Tuning Curves with Two

Stimuli in the Receptive Field

If two stimuli appear simultaneously within a neuron’s receptive

field the response to the pair is substantially stronger when

attention is directed to the more preferred of the two stimuli, as

compared to when the nonpreferred stimulus is attended. Moran

and Desimone (1985) first reported this when recording in areas

V1, V2, V4, and TEO. This finding was subsequently replicated in

area MT (Treue and Martinez-Trujillo, 1999; Treue and Maunsell,

1996) and in V2 and V4 (Ghose and Maunsell, 2008; Luck et al.,

1997; Reynolds et al., 1999).

Reynolds, Chelazzi and Desimone (Reynolds et al., 1999)

proposed an early version of the normalization model of attention

to account for their observations and conducted experiments to

test a key prediction of the model. Consistent with the model,

they found that when a preferred stimulus was paired with a non-

preferred stimulus, the nonpreferred stimulus typically sup-

pressed responses to the preferred stimulus. Critically, when

attention was directed to the nonpreferred stimulus, this

increased the suppression in a manner that was similar to that re-

sulting from elevating the contrast of the nonpreferred stimulus.

Reynolds and Desimone (2003) took this a step further by

showing, also consistent with the predictions of normalization,

that the magnitude of suppression increased with the contrast

of the nonpreferred stimulus. Ghose and Maunsell (2008) carried

out similar experiments that replicated and extended the core

findings of Reynolds, Chelazzi, and Desimone (Reynolds et al.,

1999), and proposed a similar normalization model to account

for their findings.

Treue and Martinez-Trujillo conducted an elegant experiment

that examined attentional modulation with two stimuli in the

receptive field (Figure 7). One stimulus was a nonpreferred stim-

ulus for the MT neuron that was being recorded. The other

stimulus varied across the full range of motion directions and

was thus typically the more preferred stimulus of the two. Atten-

tion was directed either to the fixation point or to one of the two

stimuli in the receptive field (Figure 7A). Responses were smaller

when attending the nonpreferred stimulus (Figure 7B, blue curve)

relative to the neutral (attending fixation) condition (Figure 7B,

yellow curve). Responses were larger when attention was

directed to the stimulus that varied in its motion direction with

the largest responses when the stimulus moved in the preferred

direction (Figure 7B, red curve).

The normalization model of attention exhibits a similar

behavior (Figure 7C), under conditions designed to simulate
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Figure 7. Attentional Modulation of Tuning
when Two Stimuli Are Present within the
Receptive Field
(A) Stimulus and task. A pair of stimuli was pre-
sented simultaneously while recording responses
of a neuron in visual cortical area MT. Both stimuli
were presented within the recorded neuron’s
receptive field. One stimulus moved in the nonpre-
ferred direction (indicated as downward), and the
other varied in motion direction. Attention was
directed either to the fixation point (dashed yellow
circle) or to one of the two stimuli in the receptive
field (dashed red and blue circles) to detect
a change in speed or direction.
(B) Responses were larger when attending the
variable direction stimulus (particularly when it
moved in the preferred direction) and smaller

when attending the nonpreferred stimulus (adapted from Treue and Martinez-Trujillo, 1999). Yellow, tuning (response as a function of the motion direction of
the variable stimulus) when attention was directed to fixation. Blue, tuning when attention was directed to the nonpreferred stimulus. Red, tuning when attention
was directed to the stimulus with variable motion direction. Error bars, ± 1 SEM across trials for a single neuron.
(C) Responses of a model neuron. Yellow, simulated responses when the attention field was flat (equal) for all motion directions, and spatial attention was directed
to the fixation point (i.e., away from the model neuron’s receptive field). Blue, simulated responses when the attention field was selective for the spatial location
corresponding to the receptive field of the model neuron, and selective for the direction of motion opposite to that preferred by the model neuron. Feature-based
attention was thus restricted to a nonpreferred direction of motion. Red, simulated responses when the attention field matched that of the variable stimulus, i.e.,
with a spatial selectivity corresponding to the receptive field and with a direction selectivity that varied with the stimulus motion direction. See Table 1 for
simulation parameters.
those of the Treue and Martinez-Trujillo (1999) experiment. The

responses of a model neuron can be approximated by assuming

that the suppressive field was constant across all motion direc-

tions. Under this approximation, the model makes three predic-

tions (see Supplemental Material for derivation). First, attending

the nonpreferred stimulus should reduce the neuronal

responses, as was observed experimentally. Second, attending

the variable motion should increase the responses, also as

observed. Third, the model predicts a sharpening of tuning

when attending the variable motion direction. Such sharpening

was observed in a later study (Martinez-Trujillo and Treue,

2004)—see Figure 6 above—but it was not reported by Treue

and Martinez-Trujillo (1999). The model offers a possible way

of reconciling the ostensible conflict in these results, because

the degree of sharpening in the model depends on the width of

the attention field. It was assumed to be relatively broad in the

simulation appearing in Figure 7C, resulting in a modest sharp-

ening of the tuning curve. This proposal could be tested by

repeating both experiments together, making within-cell

comparisons of the attentional effects when attending to a broad

versus narrow range of features, with and without a suppressive

stimulus in the receptive field, yielding sharpening of tuning only

when the attention field is narrow.

Discussion
Attention has been reported to have a variety of effects on the

responses of neurons in the macaque visual cortex. To account

for these various effects, we have shown that a computational

model, the normalization model of attention, exhibits each of

these different forms of attentional modulation, depending on

sensory conditions and task strategy (specifically, the size of

the stimulus and the spread of the attention field, relative to

the size of the receptive field and the width of the orientation/

direction tuning curve). The proposed model combines Heeger’s

normalization model of visual responses, with two hitherto

distinct ideas: Treue’s ‘‘feature-similarity gain principle’’ that

attentional gain depends on the match between a neuron’s

selectivity and the attended spatial location and features (the

multiplication in the numerator in the present model) and Rey-

nolds’ suggestion that attention modulates the mechanisms

that mediate contrast gain control (the multiplication in the

denominator in the present model).

Relation to Other Models

The normalization model of attention is an extension of a model

(Reynolds et al., 1999) that was initially suggested as a way of

implementing biased competition (Desimone and Duncan,

1995) and predicted that attention would yield a shift in the

contrast response function (Reynolds et al., 2000). Ghose and

Maunsell (2008) introduced a similar model; their implementation

of normalization, following Britten and Heuer (1999), included

a parameter that enables it to behave like a winner-take-all oper-

ation, though Ghose and Maunsell concluded that the winner-

take-all operation did not account well for their data. The present

model differs from the models suggested by Reynolds et al.

(1999) and Ghose and Maunsell (2008) in that we have incorpo-

rated a relatively narrow stimulation field and a broader suppres-

sive field (Cavanaugh et al., 2002a, 2002b). Also, the present

model incorporates feature-specific attentional modulation. The

incorporation of feature-based attentional modulation in our

model is similar to feature-selective biases assumed in the biased

competition model (Desimone and Duncan, 1995) and the

feature-similarity gain principle (Treue and Martinez-Trujillo,

1999), according to which neuronal responses are increased or

decreased by a gain factor that depends on the match between

the attended feature and the neuron’s preferred feature. A

previous model combined the feature-similarity gain principle

with normalization (Boynton, 2005), but there was a critical differ-

ence between that model and our current model. Boynton (2005)

suggested that the neural responses were multiplied by the

feature-similarity gain only after normalization whereas attention

has its effect in our model before normalization. Incorporating the

attentional gain before divisive suppression is what enabled the
178 Neuron 61, January 29, 2009 ª2009 Elsevier Inc.
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model to exhibit many of the variety of behaviors that we have

demonstrated, including the transition from contrast gain to

response gain with changes in stimulus size and attention field

size. This also enabled the current model to exhibit attention-

dependent response decreases under some circumstances,

even though the gain of the attention field was always greater

than or equal to one. An example is the sharpening of tuning

curves demonstrated in Figure 6. Previous models (e.g., Boynton,

2005) resorted to using an attentional gain greater than one for the

preferred feature value and less than one for feature values well

away from the preferred. In our model, the suppression for flank-

ing feature values arose naturally as a byproduct of normalization.

The model is also related to a number of more detailed models

that have been proposed as biophysically plausible implementa-

tions of biased competition or the feature-similarity gain principle

(Ardid et al., 2007; Deco and Rolls, 2005; Hamker and Zirnsak,

2006; Spratling and Johnson, 2004; Tiesinga et al., 2004). These

more detailed models represent interesting alternative possible

ways that the computations that define our model may be imple-

mented in the brain (see below).

Predictions

The primary prediction of the model is that the effect of attention

should systematically shift from response gain to contrast gain

by appropriate manipulations of the stimulus size and attention

field size. Testing this prediction will involve developing robust

psychophysical procedures for controlling attention field size.

A second prediction of the model is that there be interactions

between attention and surround suppression. Divisive normali-

zation with a narrow stimulation field and a broader suppressive

field has been used to account for contrast-dependent

surround-suppression in macaque area V1 (Cavanaugh et al.,

2002a, 2002b). Consequently, directing attention to a center

stimulus should cause the neuronal responses to be driven

more strongly by the center stimulus, thereby reducing the

suppressive influence of ‘‘distractor’’ stimuli in the receptive field

surround. Similarly, directing attention to a target in the suppres-

sive region of the surround should magnify suppression, result-

ing in a diminished response to the distracter in the classical

receptive field (Reynolds and Chelazzi, 2004).

A third model prediction is illustrated in Figure 4E. In that simu-

lation, a preferred stimulus and a nonpreferred stimulus were

presented simultaneously within the classical receptive field of

the model neuron, and the contrasts of the two stimuli covaried

to measure a contrast-response function for the pair of stimuli.

The model predicts that the contrast-response function will be

approximately multiplicatively scaled when directing attention

to the preferred stimulus versus the nonpreferred stimulus.

Thus, the attention effects are predicted to be strongest for the

highest contrasts.

Depending on how normalization is implemented, the model

predicts that attention may affect response latencies. Some

versions of the normalization model have accounted for the

reduction in latency that is observed with elevations in contrast

(Carandini and Heeger, 1994; Carandini et al., 1997; Victor,

1987). In these implementations of normalization, contrast eleva-

tion reduces the time constant of the neural membrane (via

shunting inhibition). If we were to incorporate such an implemen-

tation of normalization in the attention model, then this would

lead to the prediction that attention should cause a measurable

reduction in response latency. One previous study did not find

evidence for this (Reynolds et al., 2000). However, a more recent

study reported a trend in this direction (Lee et al., 2007).

Computational Benefits of Normalization

The present model adds attentional selection to the wide variety

of computational functions posited for normalization. Theoreti-

cians have offered several (not mutually exclusive) rationales

for normalization, including the proposal that it serves to limit

the dynamic range of neural firing rates without changing the

relative responses of different neurons in the population (Heeger,

1992b), to make the responses of a population of neurons nor-

mally distributed and statistically independent thereby making

for a more efficient neural code (Schwartz and Simoncelli,

2001; Simoncelli and Olshausen, 2001; Wainwright et al., 2002;

Wainwright and Simoncelli, 2000), to normalize the population

response akin to normalizing a probability distribution thereby

simplifying the decoding or ‘‘readout’’ of the neural population

(Heeger and Simoncelli, 1993; Simoncelli, 2003; Simoncelli and

Heeger, 1998) and for making neural representations invariant

with respect to one or more stimulus dimensions (Heeger

et al., 1996; Kouh and Poggio, 2008; Simoncelli and Heeger,

1998). Normalization of visual cortical responses is analogous

to earlier models of retinal light adaptation (Sperling and Sondhi,

1968) and to models of contrast gain control in the retina and

LGN (Baccus and Meister, 2002; Bonin et al., 2005; Kaplan

et al., 1987; Mante et al., 2005; Shapley and Victor, 1978; Shap-

ley and Victor, 1981). Normalization, therefore, has been

proposed as a ‘‘canonical’’ neural computation (Grossberg,

1973; Heeger et al., 1996; Kouh and Poggio, 2008).

Model Limitations

The model proposed here is a simplification of the computations

actually carried out by cortical circuits. While it does offer a rela-

tively simple way to account for a variety of neurophysiological

data, it is also the case that model parameters not varied here

could affect the qualitative behavior of the model. For example,

we have for simplicity assumed that that the stimulation field,

suppressive field, and attention field are smooth and concentric.

Under this assumption, the behavior of the model shifts from

contrast to response gain, depending only on the size of the

stimulus and the attention field. But this simplifying ideal is an

approximation to the more complex scenario that may hold for

any given actual neuron. Other distributions could be envisioned,

such as ‘‘bumpy’’ stimulation and suppressive fields, for which

the ratio of excitation to inhibition at high contrasts would change

depending on the shape of the stimulus and the (possibly multi-

modal) shape of the attention field.

Attentional modulation has been shown to have temporal

dynamics—attention has different effects on firing rates at

different times—that are beyond the reach of the current model.

For example, Reynolds, Pasternak and Desimone (Reynolds

et al., 2000) found a complete lack of attentional modulation

during the early transient part of the response evoked by the

onset of a high contrast stimulus. In the interest of simplicity,

we have focused on a feedforward implementation of normaliza-

tion. However, normalization can be implemented through feed-

forward or feedback connections or a combination of the two.

Implementations that rely on intracortical feedback (e.g.,
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Heeger, 1993) produce transient responses at stimulus onset.

Thus, while the feedforward model proposed here is attractive

for its simplicity and explanatory power, a feedback implementa-

tion of normalization is likely needed to account for the temporal

evolution of attentional modulation (note that the attention field is

always assumed to be mediated by feedback from higher

cortical areas; the issue here is whether the divisive suppression

is implemented via feedforward or via recursive lateral and/or

feedback connections). Spratling and Johnson (2004) proposed

a model that includes a mechanism that is analogous to feed-

back normalization and found that it can account for the obser-

vation that attention has no effect during the onset transient.

Attention causes a marked reduction in the variability of the

neuronal response, as indexed by the Fano factor (Mitchell

et al., 2007). Thus, attention does not simply modulate the rate

parameter of a homogeneous Poisson-like spiking process.

Rather, in addition to modulating firing rates, attention also

reduces fluctuations in firing rate that may represent a source

of internal noise. These observations are not accounted for by

the current model, but attention-dependent reduction in firing

rate variability is a property of a model proposed by Tiesinga

et al. (2004). The mechanism that they proposed for controlling

response gain and firing rate variability involved synchrony of

interconnected networks of inhibitory interneurons, which might

be a possible mechanism for approximating divisive suppression

in the normalization model.

In addition to changes in the firing rates of individual neurons,

attention can also modulate the degree of temporal coherence

across the neural population (Bichot et al., 2005; Fries et al.,

2001; Steinmetz et al., 2000). Clues about the mechanisms that

give rise to attention-dependent response synchronization

come from studies conducted in anesthetized animals, showing

that narrow spiking interneurons play a privileged role in response

synchronization (Hasenstaub et al., 2005). Narrow spiking inter-

neurons, which are inhibitory, may be responsible for both

normalization and synchronization, as well as reductions in

response variability (see preceding paragraph and also Tiesinga

et al., 2004). Experiments distinguishing narrow and broadspiking

neurons in primates as they perform attentionally demanding

tasks hold the promise of elucidating the possible role of narrow

spiking neurons in attentional modulation (Mitchell et al., 2007).

While we have considered spatial and feature-based forms of

attentional selection, there is mounting evidence that attention

can operate on more complex properties of stimuli, such as

contours, surfaces, and whole objects (Gilbert and Sigman,

2007; Khoe et al., 2005; Mitchell et al., 2004; Qiu et al., 2007;

Schoenfeld et al., 2003; Valdes-Sosa et al., 2000). Attending to

one feature of an object leads to the obligate selection of other

features of the same object while drawing attention away from

features of other objects. This type of selection thus depends

critically on the neural mechanisms that mediate perceptual

organization, that is, the integration of visual features into whole

objects and the segmentation of visual features into separate

objects. As we gain insight into the mechanisms that mediate

perceptual organization, there may be opportunities for extend-

ing the current model, and we speculate that these effects may

be quite naturally explained by the same neural computations

cascaded across the hierarchy of visual cortical areas.

Descriptive, Computational, and Mechanistic Models

The fact that even a very simple computational model can exhibit

a variety of different forms of attentional modulation underscores

the limitations that are inherent in previous descriptive models of

attention (contrast gain, response gain, sharpening of tuning

curves), which are convenient shorthands for the different (and

ostensibly conflicting) results that have been reported in the liter-

ature. A given profile of results that is consistent with one or

another of these descriptive models does not necessarily rule

out an alternative descriptive model, because the different

descriptive models need not be incompatible with one another.

We propose instead that the computational principles embodied

in the normalization model of attention offer a more promising

stepping stone for progress.

The normalization model offers a computational, not a mecha-

nistic, characterization of attentional modulation in visual cortex.

With this model in hand, one can proceed to assess the single-

unit electrophysiological phenomena with greater experimental

control over the stimuli (e.g., stimulus size) and attentional

strategy (e.g., attention field size). One can also test predictions

of the model at the level of large populations of neurons (e.g., as

measured with optical imaging or functional magnetic resonance

imaging) and at the level of behavioral performance (as

measured psychophysically).

We remain agnostic as to the possible biophysical implemen-

tation of the attentional modulation, except to point out that bio-

physically plausible models of such multiplicative effects have

been proposed (Abbott and Chance, 2005; Ardid et al., 2007;

Chance et al., 2002; Doiron et al., 2001; Hahnloser et al., 2000;

Hasenstaub et al., 2007; Marder and Calabrese, 1996; Mishra

et al., 2006; Mitchell and Silver, 2003; Murphy and Miller, 2003;

Prescott and De Koninck, 2003; Salinas and Abbott, 1996; Sali-

nas and Sejnowski, 2001; Sherman and Guillery, 1998; Shu et al.,

2003; Spratling and Johnson, 2004; Tiesinga et al., 2004). In light

of our limited ability, at present, to probe the individual elements

of the actual biological circuit in attending animals, we view the

simplicity of our proposal as a strength. Mechanistic models

will become increasingly important as new approaches in

systems neuroscience make it possible to gain deeper insight

into underlying circuitry and cellular mechanisms.

Nor do we care, for the purposes of this paper, to specify the

mechanism underlying the stimulus drive, that is, the mechanism

by which neurons achieve their selectivity for orientation and

spatial location. Selectivity has been characterized with linear

summation (Adelson and Bergen, 1985; Heeger, 1992a, 1992b;

Movshon et al., 1978a, 1978b), not unlike the original description

by Hubel and Wiesel (1962) for how simple and complex cell

responses in V1 might depend on inputs from the lateral genicu-

late nucleus. The biophysical mechanism for the linear summa-

tion might depend on a push-pull combination of synaptic exci-

tation and inhibition (Ferster and Miller, 2000; Hirsch and

Martinez, 2006).

Also, normalization itself can be implemented with a variety of

biophysical mechanisms (for review, see Carandini, 2004b). It

can be implemented either through feedforward (Carandini

et al., 2002; Priebe and Ferster, 2008) or feedback connections

(Carandini et al., 1997; Heeger, 1993) or a combination of the

two. The differences between feedforward and feedback
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implementations are most evident in the transient activity imme-

diately following stimulus onset (Bair et al., 2003). Here, however,

we focus on steady-state responses. Shunting inhibition through

lateral connections from other neurons in the cortical neighbor-

hood has been proposed as one possible mechanism for

normalization (Carandini and Heeger, 1994; Carandini et al.,

1997; Kouh and Poggio, 2008). Feedforward synaptic depres-

sion has been shown to yield nearly identical behavior (Carandini

et al., 2002). Other possible mechanisms include an increase in

the overall synaptic conductance at high contrasts (Chance

et al., 2002) or a decrease in noise at high contrasts which makes

the cells less responsive because their membrane potential is

less likely to cross threshold (Finn et al., 2007). Normalization

might not have a single biophysical mechanism. It might instead

emerge from a complex combination of a variety of mechanisms

(Priebe and Ferster, 2008). Regardless of the mechanism(s),

normalization appears to operate at multiple (perhaps all) stages

of the visual system.

To develop a mechanistic understanding the underlying

circuitry will require steps to probe the elements of the circuit it-

self. It will be important to distinguish between the different types

of neurons that make up visual cortical circuits while recording in

attending animals. Such distinctions between cell types are

regularly made in phylogenetically lower species, such as the

rat, rabbit, and ferret (Buzsáki and Eidelberg, 1982; McCormick

et al., 1985; Simons, 1978; Swadlow, 2003) and in acute

nonhuman primate experiments (Disney et al., 2007; Joshi and

Hawken, 2006; Nassi and Callaway, 2007), but rarely have

different types of neurons been distinguished in behaving

nonhuman primates (Constantinidis and Goldman-Rakic,

2002). Of particular relevance are reports that two classes of

visual cortical neurons in macaque, defined by spike width, ex-

hibited differential effects of attention (Mitchell et al., 2007;

Chen et al., 2008). The two classes may correspond to morpho-

logically and pharmacologically distinct cell types (the broad

spiking class may be largely made up of pyramidal neurons,

while the narrow spiking neurons are likely to be composed

largely of GABAergic Parvalbumin-positive neurons with the

morphology of basket cells and chandelier cells). In addition to

neuronal type, it will be helpful to determine whether attentional

modulation differs by laminar position, to understand whether

the effects of attention depend on where neurons project to

and from in the cortical circuit (Callaway, 1998; Mehta et al.,

2000). Another key emerging direction is research devoted to

understanding subcellular mechanisms that may play important

roles in attentional modulation. For example, while the glutama-

tergic inputs from higher cortical areas (e.g., frontal eye field,

posterior parietal cortex) likely play an important role in atten-

tional modulation of visual cortex, there is also evidence that

cholinergic inputs from the basal forebrain may also be involved

(Disney et al., 2007; Herrero, et al., 2008). Of particular interest

will be to characterize how these various mechanisms relate to

the computational principles that underlie the normalization

model of attention.

The computational architecture of visual cortex is very similar

from one area to another; the types, arrangements, and connec-

tions of cortical neurons are highly stereotyped (Douglas and

Martin, 2007; Mountcastle, 1997). This suggests that each

cortical area conducts calculations of the same form (e.g., linear

summation, attentional modulation, divisive normalization, and

spike threshold) at each stage of visual processing. Models of

MT physiology, for example, posit that the greater selectivity

and invariance exhibited by MT neurons in comparison to their

V1 inputs derives from an appropriate linear summation of V1

inputs, coupled with normalization and spike threshold (Heeger

et al., 1996; Simoncelli and Heeger, 1998). Models of ventral

stream processing posit an analogous hierarchy of computa-

tions such that neurons in successive stages of processing

exhibit selectivity for increasingly more complex combinations

of certain visual features while also exhibiting increased invari-

ance to other stimulus attributes (Riesenhuber and Poggio,

1999, 2002). We propose that attention likewise affects each

stage of processing such that the attention fields are cascaded

across the hierarchy of visual cortical areas, and the attentional

effects are accumulated across the hierarchy. For the purposes

of this paper, the simulations were performed with a single

processing stage, but we believe that a full simulation with

multiple stages of feature integration and attentional modulation

would be needed to quantitatively fit electrophysiological

measurements.

SUPPLEMENTAL DATA

The Supplemental Data include supplemental text and can be found with
this article online at http://www.neuron.org/supplemental/S0896-6273(09)
00003-8.
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